Photoenhanced Toxicity of Oil to Larval Fish

Mace G. Barron
Gulf Ecology Division
U.S. Environmental Protection Agency
Gulf Breeze, Florida, USA

Phototoxicity

n. an adverse reaction to ultraviolet light (UV) caused by chemicals

Photoenhanced toxicity of oil:

Increase in petroleum toxicity under natural sunlight or lab UV compared to effects observed with minimal UV

Introduction

Petroleum is phototoxic:

- * fresh and weathered oils and oil products
- * 2 to >100 fold increase in toxicity

Inadequate consideration of phototoxicity in oil spill response and impact assessment:

- * majority of tox and bioassays data conducted under fluorescent lighting
- * tests do not have ecologically relevant levels of UV

Oil is more toxic with UV

- fresh, weathered oils
- crudes, middle distlillates, heavy fuel oils
- chemically dispersed oil

PAH composition determines phototoxicity

- specific PAHs and heterocyclic aromatics
- 3 to 5 rings, specific conformations
- limited effect of alkyl substitution
- PAH absorbance spectrum

anthracene (>100x phototoxic)

phenanthrene

Mechanisms of Phototoxicity

Photosensitization:
Chemical absorbs and releases light energy

Photomodification:
Chemical transformed to more toxic product

Photosensitization Reactions

Photosensitization: UV increases toxicity in herring larvae pre-exposed to oil

Source: Barron et al. 2003. ETC 22:650

Alaska North Slope crude oil phototoxicity to marine zooplankton

- Field collected calanoid copepods
- 2 ug/L tPAH 24 hr exposure; 4 to 8 hr low UV

UV+oil:

- Indications of lipid sac peroxidation
- death, immobility, impaired swimming

Source: Deusterloh et al 2002. EST 36:3953

Separate etiology than oil-only exposure

Bunker oil field exposure

Oil+UV
herring
embryo
tissue
necrosis

single PAH lab tests

Source: Incardona et al 2012. PLoS One 7:e30116

Reciprocity Relationship

Phototoxicity = $f(UV \times PAH)$

UVA important driver of toxicity

Source: Ankley et al. 1995. ES&T 29:2828

UV and oil dose-response

- weathered middle distillate
- larval silversides

Source: Little et al. 2000. ETC 19:926

Photoenhanced
Toxicity of
North Cape
Oil Spill Water
(Fuel oil #2)

 Lab tests of field collected spill water

Source: Ho et al. (1999)

UV exposure affected by sunlight intensity, photoperiod, attenuation

Incident sunlight, Valdez Alaska (61.1231°N, 146.3053°W)

Water column attenuation and Kd

Kd: slope of Ln intensity vs depth

- larger values:
- > attenuation; less clarity

90% attenuation depth:
Z90 = 1/Kd
(eg, 0.5 kd: 2 m Z90)

PWS, Alaska: June Attenuation Coefficients

MODIS seasonal climatology record for Kd(490) and daily integrated PAR (2002-2011)

UV Exposure

Water column attenuation

- colorous ocean water: >15 m
- turbid water, high DOC: < 0.5 meters</p>
- subarctic Alaska: 0.1 to 8 m

Aquatic organisms at risk

- life stage, species-specific sensitivity
- demonstrated in over 30 species
- shallow water, intertidal habitats
- translucent eggs and larvae in photic zone

Herring larvae

- Greater toxicity with increasing oil (tPAH) exposure
- Greater toxicity with increasing UV
- Toxicity more rapid with dispersant

Risk Analysis

- calculate UVA doses in PWS water column from weekly surface UVA and season location specific Kd
- derive phototoxicity threshold of 1 ug/L tPAH and 22 W*h/m² UVA threshold from herring larvae studies (Barron et al., 2003)
- determine if tPAH exceeded 1 ug/L during Exxon spill
- determine locations, seasons, depths that exceed UVA phototoxicity thresholds
- compute probability distributions of hazard quotients and probability of phototoxicity, based on 2003 UVA

Phototoxicity Risks in Prince William Sound

Based on uncertainty, variability in surface UVA and Kd in PWS during 2003

Results

- High probability of phototoxicity in PWS based on measured surface UVA and locationseason specific Kd
- Risks were season, location, and depth specific
- High confidence in results:
 - * temporally and spatial rigorous
 - * risk probability based on UVA variability
 - * ecologically relevant phototoxicity tests
 - * same optics used in quantifying UVA dose in field and lab

Conclusions

Phototoxicity demonstrated in over 20 different fresh and laboratory weathered and field collected oil products

Oils with phototoxic properties contain specific 3 ring to 5 ring phototoxic PAHs and heterocyclic aromatics

Demonstrated in over 30 species of aquatic organisms

Species at risk: translucent early life stages in photic zone; minimal pigmentation, armoring, refugia

Environmental phototoxicity requires sufficient oil and UV exposure *requires bioaccumulation of PAH, heterocycles *can occur at low ppb tPAH in water column; few hr sunlight exposure

Recommendations

- Consider phototoxicity in spill response planning and impact assessment
- Determine seasonal and spatial risks from potential oil and UV exposure

Questions?

